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WRENCH [http://wrench-project.org] is an open-source framework
designed to make it easy for users to develop accurate and scalable
simulators of distributed computing applications, systems, and
platforms. It has been used for research, development, and education.
WRENCH capitalizes on recent and critical advances in the state of the
art of simulation of distributed computing scenarios. Specifically,
WRENCH builds on top of the open-source
SimGrid [https://simgrid.org] simulation framework. SimGrid enables
the simulation of distributed computing scenarios in a way that is
accurate (via validated simulation models), scalable (low ratio of
simulation time to simulated time, ability to run large simulations on a
single computer with low compute, memory, and energy footprints), and
expressive (ability to simulate arbitrary platform, application, and
execution scenarios). WRENCH provides directly usable high-level
simulation abstractions, which all use SimGrid as a foundation, to make
it possible to implement simulators of complex scenarios with minimal
development effort.

In a nutshell, WRENCH makes it possible to:


	Develop in-simulation implementations of runtime systems that execute
application workloads on distributed hardware platforms managed by
various software services commonly known as Cyberinfrastructure (CI)
services.


	Quickly, scalably, and accurately simulate arbitrary application and
platform scenarios for these runtime system implementation.





Architecture

WRENCH is an open-source C++ library for developing simulators. It is
neither a graphical interface nor a stand-alone simulator. WRENCH
exposes several high-level simulation abstractions to provide high-level
building blocks for developing custom simulators.

WRENCH comprises four distinct layers:


	Top-Level Simulation: A top-level set of abstractions to
instantiate a simulator that simulates the execution of a runtime
system that executes some application workload on some distributed
hardware platform whose resources are accessible via various
services.


	Simulated Execution Controller: An in-simulation implementation
of a runtime system designed to execute some application workload.


	Simulated Core Services: Abstractions for simulated
cyberinfrastructure (CI) components that can be used by the runtime
system to execute application workloads (compute services, storage
services, network proximity services, data location services, etc.).


	Simulation Core: All necessary simulation models and base
abstractions (computing, communicating, storing), provided by
SimGrid [https://simgrid.org].
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Three Classes of Users

On can distinguish three kinds of WRENCH users:


	Runtime System Users use WRENCH to simulate application workload
executions using an already available, in-simulation implementation
of a runtime system that uses Core Services to execution that
workload.


	Runtime System Developers/Researchers use WRENCH to prototype and
evaluate runtime system designs and/or to investigate and evaluate
novel algorithms to be implemented in a runtime system.


	Internal Developers contribute to the WRENCH code, typically by
implementing new Core Services.





Three Levels of API Documentation

The WRENCH library provides three incremental levels of documentation,
each targeting an API level:

User: This level targets users who want to use WRENCH for simulating
the execution of application workloads using already implemented runtime
systems. Users are NOT expected to develop new simulation abstractions
or algorithms. Instead, they only use available simulation components as
high-level building blocks to quickly build simulators. These simulators
can involve as few as a 50-line of C++ code.

Developer: This level targets runtime system developers and
researchers who work on developing novel runtime system designs and
algorithms. In addition to documentation for all simulation components
provided at the User level, the Developer documentation includes
detailed documentation for interacting with simulated Core Services.
There are two Developer APIs. The most generic API is called the
Action API, and allows developers to describe and execution
application workloads that consist of arbitrary “actions”. The
Workflow API is specifically designed for those developers that
implement workflow runtime systems (also known as Workflow Management
Systems, or WMSs), and as such is provides a Workflow abstraction that
these developers will find convenient. All details are provided in the
rest of the documentation.

Internal: This level targets those users who want to contribute code
to WRENCH. It provides, in addition to both levels above, detailed
documentation for all WRENCH classes including binders to SimGrid. This
is the API needed to, for instance, implement new Core Services.




Get in Touch

The main channel to reach the WRENCH team is via the support email:
support@wrench-project.org.


Bug Report / Feature Request: our preferred channel to report a
bug or request a feature is via

WRENCH’s Github Issues
Track [https://github.com/wrench-project/wrench/issues].















            

          

      

      

    

  

    
      
          
            
  
Installing WRENCH


Prerequisites

WRENCH is developed in C++. The code follows the C++14 standard, and
thus older compilers may fail to compile it. Therefore, we strongly
recommend users to satisfy the following requirements:


	CMake - version 3.10 or higher




And, one of the following: - g++ - version 7.5 or higher - clang
- version 9.0 or higher


Required Dependencies


	SimGrid [https://simgrid.org/] – version 3.32


	JSON for Modern C++ [https://github.com/nlohmann/json] – version
3.9.0 or higher




(See the Installation Troubleshooting section below if encountering difficulties
installing dependencies)



Optional Dependencies


	Google Test [https://github.com/google/googletest] – version 1.8
or higher (only required for running tests)


	Doxygen [http://www.doxygen.org] – version 1.8 or higher (only
required for generating documentation)


	Sphinx [https://www.sphinx-doc.org/en/master/usage/installation.html] -
version 4.5 or higher along with the following Python packages:
pip3 install sphinx-rtd-theme breathe recommonmark  (only required
for generating documentation)


	Batsched [https://gitlab.inria.fr/batsim/batsched] – version 1.4
- useful for expanded batch-scheduled resource simulation
capabilities







Source Install


Building WRENCH

You can download the wrench-<version>.tar.gz archive from the GitHub
releases [https://github.com/wrench-project/wrench/releases] page.
Once you have installed dependencies (see above), you can install WRENCH
as follows:

tar xf wrench-<version>.tar.gz
cd wrench-<version>
mkdir build
cd build
cmake ..
make -j8
make install # try "sudo make install" if you do not have write privileges





If you want to see actual compiler and linker invocations, add
VERBOSE=1 to the compilation command:

make -j8 VERBOSE=1





To enable the use of Batsched (provided you have installed that package,
see above):

cmake -DENABLE_BATSCHED=on .





If you want to stay on the bleeding edge, you should get the latest git
version, and recompile it as you would do for an official archive:

git clone https://github.com/wrench-project/wrench







Compiling and running unit tests

Building and running the unit tests, which requires Google Test, is done
as:

make -j8 unit_tests
./unit_tests







Compiling and running examples

Building the examples is done as:

make -j8 examples





All binaries for the examples are then created in subdirectories of
build/examples/



Installation Troubleshooting


Could NOT find PkgConfig (missing: PKG_CONFIG_EXECUTABLE)


	This error on MacOS is because the pkg-config package is not
installed


	Solution: install this package


	MacPorts: sudo port install pkg-config


	Brew: sudo brew install pkg-config










Could not find libgfortran when building the SimGrid dependency


	This is an error that sometimes occurs on MacOS


	A quick fix is to disable the SMPI feature of SimGrid when
configuring it: cmake -Denable_smpi=off .








Docker Containers

WRENCH is also distributed in Docker containers. Please, visit the
WRENCH Repository on Docker
Hub [https://hub.docker.com/r/wrenchproject/wrench/] to pull WRENCH’s
Docker images.

The latest tag provides a container with the latest WRENCH
release [https://github.com/wrench-project/wrench/releases]:

docker pull wrenchproject/wrench
# or
docker run --rm -it wrenchproject/wrench /bin/bash





The unstable tag provides a container with the (almost) current code
in the GitHub’s master branch:

docker pull wrenchproject/wrench:unstable
# or
docker run --rm -it wrenchproject/wrench:unstable /bin/bash





Additional tags are available for all WRENCH releases.





            

          

      

      

    

  

    
      
          
            
  
Getting started

Once you have installed the WRENCH library, following the instructions
on the installation page, you are ready to create a
WRENCH simulator. Information on what can be simulated and how to do
it are provided in the WRENCH 101 and
WRENCH 102 pages. This page is only about the
logistics of setting up a simulator project.


Using the WRENCH initialization tool

The wrench-init tool is a project generator built with WRENCH, which
creates a simple project structure as follows:

project-folder/
├── CMakeLists.txt
├── CMakeModules
│   └── FindSimGrid.cmake
│   └── FindWRENCH.cmake
├── src/
│   ├── Simulator.cpp
│   ├── Controller.cpp
├── include/
│   └── Controller.h
├── build/
└── data/
    └── platform.xml





The Simulator.cpp source file contains the main() function of
the simulator, which initializes a simulated platform and services
running on this platform; Controller.h and Controller.cpp
contain the implementation of an execution controller, which executes a
workflow on the available services. The simulator takes as command-line
argument a path to a platform description file in XML, which is
available in data/platform.xml. These files provide the minimum
necessary implementation for a WRENCH-enabled simulator.

The wrench-init tool only requires a single argument, the name of
the folder where the project skeleton will be generated:

$ wrench-init <project_folder>





Additional options supported by the tool can be found by using the
wrench-init --help command.

Of course, you do not have to use wrench-init, especially if you are
used to creating your own CMake projects. But you still may want to look
at the CMakeLists.txt file generated by wrench-init. In
particular, note that CMakeLists.txt uses the FindSimgrid.cmake
and FindWRENCH.cmake files, which are placed by wrench-init in
the CMakeModules directory.



Example WRENCH simulators

The examples in the examples directory provide good starting points
for developing your own simulators. Examples are provided for the
generic “action” API as well as for the “workflow” API, and are built
along with the WRENCH library and tools. See the examples/README.md
file for a brief description of all examples. Examples can be built by
typing make examples in the build directory.

For instance, the
examples/action_api/bare-metal-bag-of-actions example
can be executed as:

$ wrench-example-bare-metal-bag-of-actions 6 two_hosts.xml --log=custom_wms.threshold=info





(File two_hosts.xml is in the
examples/action_api/bare-metal-bag-of-actions
directory.) You should see some output in the terminal. The output in
white is produced by the simulator’s main function. The output in green
is produced by the execution controller implemented with the WRENCH
developer API.

Although you can inspect the codes of the examples on your own, we
highly recommend that you go through the Simulation
101, WRENCH 101, and
WRENCH 102 pages first. These pages make direct
references to the examples, a description of which is available in
examples/README.md in the WRENCH distribution.





            

          

      

      

    

  

    
      
          
            
  
Simulation 101

This page provides a gentle introduction to the simulation of parallel
and distributed executions, as enabled by WRENCH. This content is
intended for users who have never implemented (or even thought of
implementing) a simulator.


Simulation Overview

A simulator is a software artifact that mimics the behavior of some
system of interest. In the context of the WRENCH project, the systems of
interest are parallel and distributed platforms on which various
software runtime systems are deployed by which some application workload
is to be executed. For instance, the platform could be a homogeneous
cluster with some network attached storage, the software runtime systems
could be a batch scheduler and a file server that controls access to the
network attached storage, and the application workload could be a
scientific workflow. The system could be much more complex, with
different kinds of runtime systems running on hardware or virtualized
resources connected over a wide-area network.



Simulated Platform

A simulated platform consists of a set of computers, or, hosts.
These hosts can have various characteristics (e.g., number of cores,
clock rate). Each host can have one or more disks attached to it, on
which data can be stored and accessed. The hosts are interconnected with
each other over a network (otherwise this would not be parallel and
distributed computing). The network is a set of network links, each
with some latency and bandwidth specification. Two hosts are connected
via a network path, which is simply a sequence of links through which
messages between the two hosts are routed.

The above concepts allow us to describe a simulated platform that can
resemble real-world, either current or upcoming, platforms. Many more
details and features of the platform can be described, but the above
concepts gives us enough of a basis for everything that follows.
Platform description in WRENCH is based on the platform description
capabilities in SimGrid: a platform can be
described in an XML file or programmatically (see more details on the
WRENCH 101 page).



Simulated Processes

The execution of processes (i.e., running programs) can be simulated on
the hosts of the simulated platform. These processes can execute
arbitrary (C++) code and also place calls to WRENCH to simulate usage of
the platform resources (i.e., now I am computing, now I am sending data
to the network, now I am reading data from disk, now I am creating a new
process, etc.). As a result, the speed of the execution of these
processes is limited by the characteristics of the hardware resources in
the platform, and their usage by other processes. Process executions
proceed through simulated time until the end of the simulation, e.g.,
when the application workload of interest has completed. At that point,
the simulator can, for instance, print the simulated time.

At this point, you may be thinking: “Are you telling me that I need to
implement a bunch of simulated processes that do things and talk to each
other? My system is complicated and do not even know all the processes
I would need to simulate! There is no way I can do this!”. And you would be
right. It is true that any parallel and distributed system of interest
is, at its most basic level, just a set of processes that compute,
read/write data, and send/receive messages. But it is a lot of work to
implement a simulator of a complex system at such a low level. This is
where WRENCH comes in.



Simulated Services

WRENCH comes with a large set of already-implemented services. A
service is a set of one or more running simulated processes that
simulate a software runtime system that is commonly useful and used for
parallel and distributed computing. The two main kinds of services are
compute services and storage services, but there are others (all
detailed on the WRENCH 101 page).

A compute service is a runtime system to which you can say “run this
computation” and it replies either “ok, I will run it” or “I cannot”. If it
can run it, then later on it will tell you either “It is done” or “It is
failed”. And that is it. Underneath, this entails all kinds of processes
that compute, communicate with each other, and start other processes.
This complexity is all abstracted away by the service, which exposes a
simple, high-level, easy-to-understand API. For instance, in our example
earlier we mentioned a batch scheduler. For HPC (High Performance
Computing), this is popular runtime system that manages the execution of
jobs on a set of compute nodes on some fast local network, i.e., a
cluster. In the real-world, a batch scheduler consists of many running
processes (a.k.a. daemons) running on the cluster, implements
sophisticated algorithms to decide which job should run next, makes sure
jobs do not run on the same cores, etc. WRENCH provides an
already-implemented compute service called a
wrench::BatchComputeService that does all this for you,
under the cover.

For example, the well-known batch scheduler
Slurm uses several daemons to schedule
and manage jobs(e.g., the process slurmd runs on each compute node
and one slurmctld daemon controls everything). In this example, an
instance of wrench::BatchComputeService could represent
one Slurm cluster with one slurmctld process and
multiple slurmd processes.

A storage service is a runtime system to which you can say “here is some
data I want you to store”, “I want to read some bytes from that data I
stored before”, “Do you have this data?”, etc. A storage service in the
real world consists of several processes (e.g., to handle bounded
numbers of concurrent reads/writes from different clients) and can use
non-trivial algorithms (e.g., for overlapping network communication and
disk accesses). Here again, WRENCH comes with an already-implemented
storage service called wrench::SimpleStorageService that does all
this for you and comes with a straightforward, high-level API.
Note that a storage service does not provide by default capabilities
traditionally offered by parallel file systems such as
Lustre
(i.e., no stripping among storage nodes, no dedicated metadata servers).
If you want to model such storage back-end, you can do it by extending
the wrench::SimpleStorageService.

Each service in WRENCH comes with configurable properties, that are
well-documented and can be used to specify particular features and/or
behaviors (e.g., a specific scheduling algorithm for a
given wrench::BatchComputeService).
Each service also comes with configurable message payloads,
which specify the size in bytes of the control messages that underlying
processes exchange with each other to implement the service’s
functionality. In the real-world, the processes that comprise a service
exchange various messages, and in WRENCH you get to specify the size of
all these messages (the larger the sizes the longer the simulated
communication times). See more about Service
Customization on the WRENCH
101 page.

When the simulator is done, the calibration phase begins.
The calibration step is crucial to ensure that your simulator
accurately approximate the performance of the application you study
on the target platform. Basically, calibrating a simulator implies
that you fine-tune the simulator to approximate the real performance
of the target application when running on the modeled platform.
Payloads and properties play a central role in this calibration
step as they control the weight of many important actions (for example,
how much overhead when reading a file from a storage service?).



Simulated Controller

As you recall, the goal of a WRENCH simulator is to simulate the
execution of some application workload. And so far, we have not said much
about this workload or about how one goes about simulating its
execution. So let’s…

An application workload is executed using the services deployed on the
platform. To do so, you need to implement one process called an
execution controller. This process invokes the services to execute
the application workload, whatever that workload is. Say, for instance,
that your application workload consists in performing some amount of
computation based on data in some input file. The controller should ask
a compute service to start a job to perform the computation, while
reading the input from some storage service that stores the input file.
Whenever the compute service replies that the computation has finished,
then the execution controller’s work is done.

The execution controller is the core of the simulator, as it is where
you implement whatever algorithm/strategy you wish to simulate for
executing the application workload. At this point the execution
controller likely seems a bit abstract. But we would not say more about it
until you get to the WRENCH 102 page, which is
exclusively about the controller.



What’s next

At this point, you should be able to jump into WRENCH 101!





            

          

      

      

    

  

    
      
          
            
  
WRENCH 101

This page provides high-level and detailed information about what WRENCH
simulators can simulate and how they do it. Full API details are
provided in the User API Reference. See the
relevant pages for instructions on how to install
WRENCH and how to setup a simulator
project.


10,000-ft view of a WRENCH simulator

A WRENCH simulator can be as simple as a single main() function that
creates a platform to be simulated (the hardware) and a set of services
that run on the platform (the software). These services correspond to
software that knows how to store data, perform computation, and many
other useful things that real-world cyberinfrastructure services can do.

The simulator then creates a special (simulated) process called an
execution controller. An execution controller interacts with the
services running on the platform to execute some application workload of
interest, whatever that workflow is. The execution controller is
implemented using the WRENCH Developer
API, as discussed in the WRENCH
102 page.

The simulation is then launched via a single call
(wrench::Simulation::launch()), and returns only once the execution
controller has terminated (after completing or failing to complete
whatever it wanted to accomplish).



1,000-ft view of a WRENCH simulator

In this section, we dive deeper into what it takes to implement a WRENCH
simulator. To provide context, we refer to the example simulator in
the examples/action_api/multi-action-multi-job
directory of the WRENCH distribution. This simulator simulates the
execution of a few jobs, each of which consists of one or more actions,
on a 4-host platform that runs a couple of compute services and storage
services. Although other examples are available (see
examples/README.md), this simple example is sufficient to showcase
most of what a WRENCH simulator does, which consists in going through
the steps below. Note that all simulator codes in the examples
directory contain extensive comments.


Step 0: Include wrench.h

For ease of use, all WRENCH abstractions in the WRENCH User
API are available through a single header file:

#include <wrench.h>







Step 1: Create and initialize a simulation

The state of a WRENCH simulation is defined by the
wrench::Simulation class. A simulator must create an instance of
this class by calling wrench::Simulation::createSimulation() and
initialize it with the wrench::Simulation::init() member function.
The multi-action-multi-job simulator does this as follows:

auto simulation = wrench::Simulation::createSimulation();
    simulation->init(&argc, argv);





Note that this member function takes in the command-line arguments
passed to the main function of the simulator. This is so that it can
parse WRENCH-specific and
SimGrid-specific
command-line arguments. (Recall that WRENCH is based on
SimGrid.) Two useful such arguments are
--wrench-help, which displays a WRENCH help message, and
--help-simgrid, which displays an extensive SimGrid help message.
Another one is --wrench-full-log, which displays full simulation
logs (see below for more details).



Step 2: Instantiate a simulated platform

This is done with the wrench::Simulation::instantiatePlatform()
method. There are two versions of this method. The first version
takes as argument a SimGrid virtual platform description
file, we defines all
the simulated hardware (compute hosts, clusters of hosts, storage
resources, network links, routers, routes between hosts, etc.). The
bare-metal-chain simulator comes with a platform description file,
examples/action_api/multi-action-multi-job/four_hosts.xml, which we
include here:

<?xml version='1.0'?>
<!DOCTYPE platform SYSTEM "https://simgrid.org/simgrid.dtd">
<platform version="4.1">
    <zone id="AS0" routing="Full">

        <!-- The host on which the Controller will run -->
        <host id="UserHost" speed="10Gf" core="1">
        </host>

        <!-- The host on which the bare-metal compute service will run and also run jobs-->
        <host id="ComputeHost1" speed="35Gf" core="10">
            <prop id="ram" value="16GB" />
        </host>

        <!-- Another host on which the bare-metal compute service will be able to run jobs -->
        <host id="ComputeHost2" speed="35Gf" core="10">
            <prop id="ram" value="16GB" />
        </host>

        <!-- The host on which the first storage service will run -->
        <host id="StorageHost1" speed="10Gf" core="1">
            <disk id="hard_drive" read_bw="100MBps" write_bw="100MBps">
                <prop id="size" value="5000GiB"/>
                <prop id="mount" value="/"/>
            </disk>
        </host>

        <!-- The host on which the second storage service will run -->
        <host id="StorageHost2" speed="10Gf" core="1">
            <disk id="hard_drive" read_bw="200MBps" write_bw="200MBps">
                <prop id="size" value="5000GiB"/>
                <prop id="mount" value="/"/>
            </disk>
        </host>

        <!-- The host on which the cloud compute service will run -->
        <host id="CloudHeadHost" speed="10Gf" core="1">
            <disk id="hard_drive" read_bw="100MBps" write_bw="100MBps">
                <prop id="size" value="5000GiB"/>
                <prop id="mount" value="/scratch/"/>
            </disk>
        </host>

        <!-- The host on which the cloud compute service will start VMs -->
        <host id="CloudHost" speed="25Gf" core="8">
            <prop id="ram" value="16GB" />
        </host>

        <!-- A network link shared by EVERY ONE-->
        <link id="network_link" bandwidth="50MBps" latency="1ms"/>

        <!-- The same network link connects all hosts together -->
        <route src="UserHost" dst="ComputeHost1"> <link_ctn id="network_link"/> </route>
        <route src="UserHost" dst="ComputeHost2"> <link_ctn id="network_link"/> </route>
        <route src="UserHost" dst="StorageHost1"> <link_ctn id="network_link"/> </route>
        <route src="UserHost" dst="StorageHost2"> <link_ctn id="network_link"/> </route>
        <route src="UserHost" dst="CloudHeadHost"> <link_ctn id="network_link"/> </route>
        <route src="ComputeHost1" dst="StorageHost1"> <link_ctn id="network_link"/> </route>
        <route src="ComputeHost2" dst="StorageHost2"> <link_ctn id="network_link"/> </route>
        <route src="CloudHeadHost" dst="CloudHost"> <link_ctn id="network_link"/> </route>
        <route src="StorageHost1" dst="CloudHost"> <link_ctn id="network_link"/> </route>
        <route src="StorageHost2" dst="CloudHost"> <link_ctn id="network_link"/> </route>

    </zone>
</platform>





This file defines a platform with several hosts, each with some number
of cores and a core speed. Some hosts have a disk attached to them, some
declare a RAM capacity. The platform also declares a single network link
with a particular latency and bandwidth, and routes between some of the
hosts (over that one link). We refer the reader to platform description
files in other examples in the examples directory and to the
SimGrid documentation
for more information on how to create platform description files. There
are many possibilities for defining complex platforms at will. The
bare-metal-chain simulator takes the path to the platform description as
its 1st (and only) command-line argument and thus instantiates the
simulated platform as:

simulation.instantiatePlatform(argv[1]);





The second version of the
wrench::Simulation::instantiatePlatform() method takes as input a
function that creates the platform description programmatically using
the SimGrid platform description
API. The example
in
examples/workflow_api/basic-examples/bare-metal-bag-of-tasks-programmatic-platform
shows how the XML platform description in
examples/workflow_api/basic-examples/bare-metal-bag-of-tasks/two_hosts.xml
can be implemented programmatically. (Note that this example passes a
functor to wrench::Simulation::instantiatePlatform() rather than a
plain lambda.)



Step 3: Instantiate services on the platform

While the previous step defines the hardware platform, this step defines
what software services run on that hardware. The
wrench::Simulation::add() member function is used to add services to
the simulation. Each class of service is created with a particular
constructor, which also specifies host(s) on which the service is to be
started. Typical kinds of services include compute services, storage
services, and file registry services (see
below for more details).

The bare-metal-chain simulator instantiates four services. The first one
is a compute service:

auto baremetal_service = simulation->add(new wrench::BareMetalComputeService("ComputeHost1", {{"ComputeHost1"}, {"ComputeHost2"}}, "", {}, {}));





The wrench::BareMetalComputeService class implements a simulation of
a compute service that greedily runs jobs submitted to it. You can think
of it as a compute server that simply fork-execs (possibly
multi-threaded) processes upon request, only ensuring that physical RAM
capacity is not exceeded. In this particular case, the compute service
is started on host ComputeHost1. It has access to the compute
resources of that same host as well as that of a second host
ComputeHost2 (2nd argument is a list of available compute hosts).
The third argument corresponds to the path of some scratch storage,
i.e., storage in which data can be stored temporarily while a job runs.
In this case, the scratch storage specification is empty as host
ComputeHost1 has no disk attached to it. The last two arguments are
std::map objects (in this case both empty), that are used to
configure properties of the service (see details in this section
below).

The second service is a cloud compute service:

auto cloud_service = simulation->add(new wrench::CloudComputeService("CloudHeadHost", {"CloudHost"}, "/scratch/", {}, {}));





The wrench::CloudComputeService implements a simulation of a cloud
platform on which virtual machine (VM) instances can be created,
started, used, and shutdown. The service runs on host CloudHeadHost
and has access to the compute resources on host CloudHost. Unlike
the previous service, this service has scratch space, at path /data
on the disk attached to host CloudHost (as seen in the XML platform
description). Here again, the last two arguments are used to configure
properties of the service.

The third service is a storage service:

auto storage_service_1 = simulation->add(new wrench::SimpleStorageService("StorageHost1", {"/"}, {{wrench::SimpleStorageServiceProperty::BUFFER_SIZE, "50000000"}}, {}));





The wrench::SimpleStorageService class implements a simulation of a
remotely-accessible storage service on which files can be stored,
copied, deleted, read, and written. In this particular case, the storage
service is started on host StorageHost1. It uses storage mounted at
/ on that host (which corresponds to the mount path of a disk, as
seen in the XML platform description). The last two arguments, as for
the compute services, are used to configure particular properties of the
service. In this case, the service is configured to use a 50-MB buffer
size to pipeline network and disk accesses (see details in this section
below).

The fourth service is a another storage service that runs on host
StorageHost2.



Step 4: Instantiate at least one Execution controller

At leave on execution controller must be created and added to the
simulation. This is a special service that is in charge of executing an
application workload on the platform. It is implemented as a class that
derives from wrench::ExecutionController and override its
constructor as well as its main() method. This method is
implementing using the WRENCH Developer
API.

The example in examples/action_api/bare-metal-bag-of-actions does
this as follows:

auto wms = simulation->add(new wrench::TwoTasksAtATimeExecutionController(num_tasks, baremetal_service, storage_service, "UserHost"));





This creates an execution controller and passes to its constructor a
number of tasks to execute, the compute service to use, the storage
service to use, and the host on which it is supposed to execute. Class
wrench::TwoTasksAtATimeExecutionController is of course provided
with the example. See the WRENCH 102 page for
information on how to implement an execution controller.

One important question is how to specify an application workload and
tell the execution controller to execute it. This is completely up to
the developer, and in this example the execution controller is simply
given a number of tasks and then creates files, file read actions, file
write actions, and compute actions to be executed as part of various
jobs (see the implementation of
wrench::TwoTasksAtATimeExecutionController). All the examples in the
examples/action_api directory do this in different ways. However,
many users are interested in workflow applications, for this reason,
WRENCH provides a wrench::Workflow class that has member functions
to manually create tasks and files and add them to a workflow. The use
of this class is shown in all the examples in directory
examples/workflow_api. The wrench::Workflow class also provides
member functions to import workflows from workflow description files in
standard JSON format. Note
that an execution controller that executes a workflow is often called a
Workflow Management System (WMS). This is why many execution controllers
in the examples in directory examples/workflow_api have WMS in their
class names.



Step 5: Launch the simulation

This is the easiest step, and is done by simply calling
wrench::Simulation::launch():

simulation.launch();





This call checks the simulation setup and blocks until the execution
controller terminates.



Step 6: Process simulation output

The processing of simulation output is up to the user as different users
are interested in different output. For instance, the examples in
directory examples/action_api merely print some information to the
terminal. But this information could be collected in data structures,
output to files, etc. This said, WRENCH provides a
wrench::Simulation::getOutput() member function that returns an
instance of class wrench::SimulationOutput. Note that there are
member functions to configure the type and amount of output generated
(see the wrench::SimulationOutput::enable*Timestamps() member
functions). wrench::SimulationOutput has a templated
wrench::SimulationOutput::getTrace() member function to retrieve
traces for various information types. This is exemplified in several of
the example simulators in the examples/workflow_api directory. Note
that many of the timestamp types have to do with the execution of
workflow tasks, as defined using the wrench::Workflow class.

Another kind of output is (simulated) energy consumption. WRENCH
leverages SimGrid’s energy
plugin,
which provides accounting for computing time and dissipated energy in
the simulated platform. SimGrid’s energy plugin requires host pstate
definitions (levels of performance, CPU frequency) in the XML platform
description file. The
wrench::Simulation::getEnergyConsumed() member function returns
energy consumed by all hosts in the platform. Important: The energy
plugin is NOT enabled by default in WRENCH simulations. To enable it,
pass the --wrench-energy-simulation command line option to the
simulator. See examples/workflow_api/basic-examples/cloud-bag-of-tasks-energy for
an example simulator that makes use of this plugin (and an example
platform description file that defines host power consumption profiles).

It is also possible to dump all simulation output to a JSON file. This
is done with the wrench::SimulationOutput::dump*JSON() member
functions. The documentation of each member function details the
structure of the JSON output, in case you want to parse/process the JSON
by hand. See the API documentation of the wrench::SimulationOutput
class for all details.

Alternatively, you can run the installed wrench-dashboard tool,
which provides interactive visualization/inspection of the generated
JSON simulation output. You can run the dashboard for the JSON output
generated by the example simulators in
examples/workflow_api/basic-examples/bare-metal-bag-of-task and
examples/workflow_api/basic-examples/cloud-bag-of-task. These
simulators produce a JSON file in /tmp/wrench.json. Simply run the
command wrench-dashboard, which pops up a Web browser window in
which you simply upload the /tmp/wrench.json file.

We find that most users end up doing their own, custom simulation output
generation since they are the ones who know what they are interested in.




Available services

Below is the list of services available to-date in WRENCH. Click on the
corresponding links for more information on what these services are and
on how to create them.


	Compute Services: These are services that know how to compute
workflow tasks:


	Bare-metal Servers


	Cloud Platforms


	Virtualized Cluster
Platforms


	Batch-scheduled Clusters


	HTCondor






	Storage Services: These are services that know how to store and
give access to workflow files:


	Simple Storage Service


	XRootD Storage Service






	File Registry Services: These services, also known as replica
catalogs, are simply databases of <filename, list of locations>
key-values pairs of the storage services on which copies of files are
available.


	File Registry Service






	Network Proximity Services: These are services that monitor the
network and maintain a database of host-to-host network distances:


	Network Proximity Service






	EnergyMeter Services: These services are used to periodically
measure host energy consumption and include these measurements in the
simulation output:


	Energy Meter Service






	BandwidthMeter Services: These services are used to periodically
measure network links’ bandwidth usage and include these measurements
in the simulation output:


	Bandwidth Meter Service










Customizing services

Each service is customizable by passing to its constructor a property
list, i.e., a key-value map where each key is a property and each value
is a string. Each service defines a property class. For instance, the
wrench::Service class has an associated wrench::ServiceProperty
class, the wrench::ComputeService class has an associated
wrench::ComputeServiceProperty class, and so on at all levels of the
service class hierarchy.

The API documentation for these property classes explains what each
property means, what possible values are, and what default values are.
Other properties have more to do with what the service can or should do
when in operation. For instance, the
wrench::BatchComputeServiceProperty class defines a
wrench::BatchComputeServiceProperty::BATCH_SCHEDULING_ALGORITHM
which specifies what scheduling algorithm a batch service should use for
prioritizing jobs. All property classes inherit from the
wrench::ServiceProperty class, and one can explore that hierarchy to
discover all possible (and there are many) service customization
opportunities.

Finally, each service exchanges messages on the network with other
services (e.g., an execution controller sends a “do some work for me”
messages to compute services). The size in bytes, or payload, of all
messages can be customized similarly to the properties, i.e., by passing
a key-value map to the service’s constructor. For instance, the
wrench::ServiceMessagePayload class defines a
wrench::ServiceMessagePayload::STOP_DAEMON_MESSAGE_PAYLOAD property
which can be used to customize the size, in bytes, of the control
message sent to the service daemon (that is the entry point to the
service) to tell it to terminate. Each service class has a corresponding
message payload class, and the API documentation for these message
payload classes details all messages whose payload can be customized.



Customizing logging

When running a WRENCH simulator you may notice that there is no logging
output. By default logging output is disabled, but it is often useful to
enable it (remembering that it can slow down the simulation). WRENCH’s
logging system is a thin layer on top of SimGrid’s logging system, and
as such is controlled via command-line arguments.

The bare-metal-chain example simulator can be executed as follows in
the examples/action_api/bare-metal-bag-of-actions subdirectory of
the build directory (after typing make examples in the build
directory):

./wrench-example-bare-metal-bag-of-tasks 10 ./four_hosts.xml





The above generates almost no output to the terminal whatsoever. It is
possible to enable some logging to the terminal. It turns out the
execution controller class in that example
(TwoTasksAtATimeExecutionController.cpp) defines a logging category
named custom_execution_controller (see one of the first lines of
examples/action_api/bare-metal-bag-of-actions/TwoActionsAtATimeExecutionController.cpp),
which can be enabled as:

./wrench-example-bare-metal-bag-of-tasks 10 ./four_hosts.xml --log=custom_execution_controller.threshold=info





You will now see some (green) logging output that is generated by the
execution controller implementation. It is typical to want to see these
messages as the controller is the brain of the application workload
execution.

One can disable the coloring of the logging output with the
--wrench-no-color argument:

./wrench-example-bare-metal-bag-of-tasks 10 ./four_hosts.xml --log=custom_execution_controller.threshold=info --wrench-no-color





Disabling color can be useful when redirecting the logging output to a
file.

Enabling all logging is done with the argument --wrench-full-log:

./wrench-example-bare-metal-bag-of-tasks 10 ./four_hosts.xml --wrench-full-log





The logging output now contains output produced by all the simulated
running processed. More details on logging capabilities are displayed
when passing the --help-logs command-line argument to your
simulator. Log category names are attached to *.cpp files in the
simulator code, the WRENCH code, and the SimGrid code. Using the
--help-log-categories command-line argument shows the entire log
category hierarchy (which is huge).

See the Simgrid logging
documentation for all
details.





            

          

      

      

    

  

    
      
          
            
  
WRENCH 102

In WRENCH’s terminology, and execution controller is software that
makes all decisions and takes all actions for executing some application
workflow using cyberinfrastructure services. It is thus a crucial
component in every WRENCH simulator. WRENCH does not provide any
execution controller implementation, but provides the means for
developing custom ones. This page is meant to provide high-level and
detailed information about implementing an execution controller in
WRENCH. Full API details are provided in the Developer API
Reference.


Basic blueprint for an execution controller implementation

An execution controller implementation needs to use many WRENCH classes,
which are accessed by including a single header file:

#include <wrench-dev.h>





An execution controller implementation must derive the
wrench::ExecutionController class, which means that it must override
several the virtual main() member function. A typical such
implementation of this function goes through a simple loop as follows:

// A) create/retrieve application workload to execute
// B) obtain information about running services
while (application workload execution has not completed/failed) {
  // C) interact with services
  // D) wait for an event and react to it
}





In the next three sections, we give details on how to implement the
above. To provide context, we make frequent references to the execution
controllers implemented as part of the example simulators in the
examples/ directory. Afterwards are a few sections that highlight
features and functionality relevant to execution controller development.



A) Finding out information about running services

Services that the execution controller can use are typically passed to
its constructor. Most service classes provide member functions to get
information about the capabilities and properties of the services. For
instance, a wrench::ComputeService has a
wrench::ComputeService::getNumHosts() member function that returns
how many compute hosts the service has access to in total. A
wrench::StorageService has a
wrench::StorageService::getFreeSpace() member function to find out
how many bytes of free space are available on it. And so on…

To take a concrete example, consider the execution controller
implementation in
examples/workflow_api/basic-examples/batch-bag-of-tasks/TwoTasksAtATimeBatchWMS.cpp.
This WMS finds out the compute speed of the cores of the compute nodes
available to a wrench::BatchComputeService as:

double core_flop_rate = (*(batch_service->getCoreFlopRate().begin())).second;





Member function wrench::ComputeService::getCoreFlopRate() returns a
map of core compute speeds indexed by hostname (the map thus has one
element per compute node available to the service). Since the compute
nodes of a batch compute service are homogeneous, the above code simply
grabs the core speed value of the first element in the map.

It is important to note that these member functions actually involve
communication with the service, and thus incur overhead that is part of
the simulation (as if, in the real-world, you would contact a running
service with a request for information over the network). This is why
the line of code above, in that example execution controller, is
executed once and the core compute speed is stored in the
core_flop_rate variable to be re-used by the execution controller
repeatedly throughout its execution.



B) Interacting with services

An execution controller can have many and complex interactions with
services, especially with compute and storage services. In this section,
we describe how WRENCH makes these interactions relatively easy,
providing examples for each kind of interaction for each kind of
service.


Job Manager and Data Movement Manager

As expected, each service type provides its own API. For instance, a
network proximity service provides member functions to query the
service’s host distance databases. The Developer API
Reference provides all necessary
documentation, which also explains which member functions are
synchronous and which are asynchronous (in which case some
event will occur in the
future). However, the WRENCH developer will find that many member
functions that one would expect are nowhere to be found. For instance,
the compute services do not have (public) member functions for
submitting jobs for execution!

The rationale for the above is that many member functions need to be
asynchronous so that the execution controller can use services
concurrently. For instance, an execution controller could submit a job
to two distinct compute services asynchronously, and then wait for the
service which completes its job first and cancel the job on the other
service. Exposing this asynchronicity to the execution controller would
require that the WRENCH developer use data structures to perform the
necessary bookkeeping of ongoing service interactions, and process
incoming control messages from the services on the (simulated) network
or alternately register many callbacks. Instead, WRENCH provides
managers. One can think of managers as separate threads that handle
all asynchronous interactions with services, and which have been
implemented for your convenience to make interacting with services easy.

There are two managers: a job manager
(class wrench::JobManager) and a data movement manager (class
wrench::DataMovementManager). The base
wrench::ExecutionController class provides two member functions for
instantiating and starting these managers:
wrench::ExecutionController::createJobManager() and
wrench::ExecutionController::createDataMovementManager().

Creating one or two of these managers typically is the first thing an
execution controller does. For instance, the execution controller in
examples/workflow_api/basic-examples/bare-metal-data-movement/DataMovementWMS.cpp
starts by doing:

auto job_manager = this->createJobManager();
auto data_movement_manager = this->createDataMovementManager();





Each manager has its own documented API, and is discussed further in
sections below.



Interacting with storage services

Typical interactions between an execution controller and a storage
service include locating, reading, writing, and copying files. Different storage
service implementations may or not implement some of of these operations.
Click on the following links to see concrete examples
of interactions with the currently available storage service type:



	Simple storage service


	XRootD storage service









Interacting with compute services


The Job abstraction

The main activity of an execution controller is to execute workflow
tasks on compute services. Rather than submitting tasks directly to
compute services, an execution controller must create “jobs”, which can
comprise multiple tasks and involve data copy/deletion operations. The
job abstraction is powerful and greatly simplifies the task of an
execution controller while affording flexibility.

There are three kinds of jobs in WRENCH: wrench::CompoundJob,
wrench::StandardJob, and wrench::PilotJob.

A Compound Job is simply set of actions to be performed, with
possible control dependencies between actions. It is the most generic,
flexible, and expressive kind of job. See the API documentation for the
wrench::CompoundJob class and the examples in the
examples/action_api directory. The other types of jobs below are
actually implemented internally as compound jobs. The Compound Job
abstraction is the most recent addition to the WRENCH API, and vastly
expands the list of possible things that an execution controller can do.
But because it is more recent, the reader will find that there are more
examples in these documents and in the examples directory that use
standard jobs (described below). But all these examples could be easily
rewritten using the more generic compound job abstraction.

A Standard Job is a specific kind of job designed for workflow
applications. In its most complete form, a standard job specifies: - A
set (in fact a vector) of std::shared_ptr<wrench::WorkflowTask> to
execute, so that each task without all its predecessors in the set is
ready;


	A std::map of
<std::shared_ptr<wrench::DataFile>>, std::shared_ptr<wrench::StorageService>>
pairs that specifies from which storage services particular input
files should be read and to which storage services output files
should be written;


	A set of file copy operations to be performed before executing the
tasks;


	A set of file copy operations to be performed after executing the
tasks; and


	A set of file deletion operations to be performed after executing the
tasks and file copy operations.




Any of the above can actually be empty, and in the extreme a standard
job can do nothing.

A Pilot Job (sometimes called a “placeholder job” in the literature)
is a concept that is mostly relevant for batch scheduling. In a
nutshell, it is a job that allows late binding of tasks to resources. It
is submitted to a compute service (provided that service supports pilot
jobs), and when it starts it just looks to the execution controller like
a short-lived wrench::BareMetalComputeService to which compound
and/or standard jobs can be submitted.

All jobs are created via the job manager, which provides
wrench::JobManager::createCompoundJob(),
wrench::JobManager::createStandardJob(), and
wrench::JobManager::createPilotJob() member functions (the job
manager is thus a job factory).

In addition to member functions for job creation, the job manager also
provides the following:


	wrench::JobManager::submitJob(): asynchronous submission of a job
to a compute service.


	wrench::JobManager::terminateJob(): synchronous termination of a
previously submitted job.




The next section gives examples of interactions with each kind of
compute service.

Click on the following links to see detailed descriptions and examples
of how jobs are submitted to each compute service type:


	Bare-metal compute service


	Batch compute service


	Cloud compute service


	Virtualized cluster compute service


	HTCondor compute service







Interacting with file registry services

Interaction with a file registry service is straightforward and done by
directly calling member functions of the wrench::FileRegistryService
class. Note that often file registry service entries are managed
automatically, e.g., via calls to wrench::DataMovementManager and
wrench::StorageService member functions. So often an execution
controller does not need to interact with the file registry service.

Adding/removing an entry to a file registry service is done as follows:

std::shared_ptr<wrench::FileRegistryService> file_registry;
std::shared_ptr<wrench::DataFile> some_file;
std::shared_ptr<wrench::StorageService> some_storage_service;

[...]

file_registry->addEntry(some_file, wrench::FileLocation::LOCATION(some_storage_service));
file_registry->removeEntry(some_file, wrench::FileLocatio::LOCATION(some_storage_service));





The wrench::FileLocation class is a convenient abstraction for a
file copy available at some storage service (with optionally a directory
path at that service).

Retrieving all entries for a given file is done as follows:

std::shared_ptr<wrench::FileRegistryService> file_registry;
std::shared_ptr<wrench::DataFile> some_file;

[...]

std::set<std::shared_ptr<wrench::FileLocation>> entries;
entries = file_registry->lookupEntry(some_file);





If a network proximity service is running, it is possible to retrieve
entries for a file sorted by non-decreasing proximity from some
reference host. Returned entries are stored in a (sorted) std::map
where the keys are network distances to the reference host. For
instance:

std::shared_ptr<wrench::FileRegistryService> file_registry;
std::shared_ptr<wrench::DataFile> some_file;
std::shared_ptr<wrench::NetworkProximityService> np_service;

[...]

auto entries = fr_service->lookupEntry(some_file, "ReferenceHost", np_service);





See the documentation of wrench::FileRegistryService
for more API member functions.



Interacting with network proximity services

Querying a network proximity service is straightforward. For instance,
to obtain a measure of the network distance between hosts “Host1” and
“Host2”, one simply does:

std::shared_ptr<wrench::NetworkProximityService> np_service;

double distance = np_service->query(std::make_pair("Host1","Host2"));





This distance corresponds to half the round-trip-time, in seconds,
between the two hosts. If the service is configured to use the Vivaldi
coordinate-based system, as in our example above, this distance is
actually derived from network coordinates, as computed by the Vivaldi
algorithm. In this case, one can actually ask for these coordinates for
any given host:

std::pair<double,double> coords = np_service->getCoordinates("Host1");





See the documentation of wrench::NetworkProximityService
for more API member functions.




C) Workflow execution events

Because the execution controller performs asynchronous operations, it
needs to wait for and re-act to events. This is done by calling the
wrench::ExecutionController::waitForAndProcessNextEvent() member
function implemented by the base wrench::ExecutionController class.
A call to this member function blocks until some event occurs and then
calls a callback member function. The possible event classes all derive
from the wrench::ExecutionEvent class, and an execution controller
can override the callback member function for each possible event (the
default member function does nothing but print some log message). These
overridable callback member functions are:


	wrench::ExecutionController::processEventCompoundJobCompletion():
react to a compound job completion


	wrench::ExecutionController::processEventCompoundJobFailure():
react to a compound job failure


	wrench::ExecutionController::processEventStandardJobCompletion():
react to a standard job completion


	wrench::ExecutionController::processEventStandardJobFailure():
react to a standard job failure


	wrench::ExecutionController::processEventPilotJobStart(): react
to a pilot job beginning execution


	wrench::ExecutionController::processEventPilotJobExpiration():
react to a pilot job expiration


	wrench::ExecutionController::processEventFileCopyCompletion():
react to a file copy completion


	wrench::ExecutionController::processEventFileCopyFailure(): react
to a file copy failure




Each member function above takes in an event object as parameter. In the
case of failure, the event includes a wrench::FailureCause object,
which can be accessed to analyze (or just display) the root cause of the
failure.

Consider the execution controller in
examples/workflow_api/basic-examples/bare-metal-bag-of-tasks/TwoTasksAtATimeWMS.cpp.
At each each iteration of its main loop it does:

// Submit some standard job to some compute  service
job_manager->submitJob(...);

// Wait for and process next event
this->waitForAndProcessNextEvent();





In this simple example, only one of two events could occur at this
point: a standard job completion or a standard job failure. As a result,
this execution controller overrides the two corresponding member
functions as follows:

void TwoTasksAtATimeWMS::processEventStandardJobCompletion(
               std::shared_ptr<StandardJobCompletedEvent> event) {
  // Retrieve the job that this event is for
  auto job = event->job;
  // Print some message for each task in the job
  for (auto const &task : job->getTasks()) {
    std::cerr  << "Notified that a standard job has completed task " << task->getID() << std::endl;
  }
}

void TwoTasksAtATimeWMS::processEventStandardJobFailure(
               std::shared_ptr<StandardJobFailedEvent> event) {
  // Retrieve the job that this event is for
  auto job = event->job;
  std::cerr  << "Notified that a standard job has failed (failure cause: ";
  std::cerr << event->failure_cause->toString() << ")" <<  std::endl;
  // Print some message for each task in the job if it has failed
  std::cerr << "As a result, the following tasks have failed:";
  for (auto const &task : job->getTasks()) {
    if (task->getState != WorkflowTask::COMPLETE) {
      std::cerr  << "  - " << task->getID() << std::endl;
    }
  }
}





You may note some difference between the above code and that in
examples/workflow_api/basic-examples/bare-metal-bag-of-tasks/TwoTasksAtATimeWMS.cpp.
This is for clarity purposes, and especially because we have not yet
explained how WRENCH does message logging. See an upcoming section
about logging.

While the above callbacks are convenient, sometimes it is desirable to
do things more manually. That is, wait for an event and then process it
in the code of the main loop of the execution controller rather than in
a callback member function. This is done by calling the
wrench::waitForNextEvent() member function. For instance, the
execution controller in
examples/workflow_api/basic-examples/bare-metal-data-movement/DataMovementWMS.cpp
does it as:

// Initiate an asynchronous file copy
data_movement_manager->initiateAsynchronousFileCopy(...);

// Wait for an event
auto event = this->waitForNextEvent();

//Process the event
if (auto file_copy_completion_event = std::dynamic_pointer_cast<wrench::FileCopyCompletedEvent>(event)) {
  std::cerr << "Notified of a file copy completion for file ";
  std::cerr << file_copy_completion_event->file->getID()<< "as expected" << std::endl;
} else {
   throw std::runtime_error("Unexpected event (" + event->toString() + ")");}
}







Exceptions

Most member functions in the WRENCH Developer API throw exceptions. In
fact, most of the code fragments above should be in try-catch clauses,
catching these exceptions.

Some exceptions correspond to failures during the simulated workflow
executions (i.e., errors that would occur in a real-world execution and
are thus part of the simulation). Each such exception contains a
wrench::FailureCause object, which can be accessed to understand the
root cause of the execution failure. Other exceptions (e.g.,
std::invalid_arguments, std::runtime_error) are thrown as well,
which are used for detecting misuses of the WRENCH API or internal
WRENCH errors.



Finding information and interacting with hardware resources

The wrench::Simulation class provides many member functions to
discover information about the (simulated) hardware platform and
interact with it. It also provides other useful information about the
simulation itself, such as the current simulation date. Some of these
member functions are static, but others are not. The
wrench::ExecutionController class includes a simulation object.
Thus, the execution controller can call member functions on the
this->simulation object. For instance, this fragment of code shows
how an execution controller can figure out the current simulated date
and then check that a host exists (given a hostname) and, if so, set its
pstate (power state) to the highest possible setting.

auto now = wrench::Simulation::getCurrentSimulatedDate();
if (wrench::Simulation::doesHostExist("SomeHost"))  {
  this->simulation->setPstate("SomeHost", wrench::Simulation::getNumberofPstates("SomeHost")-1);
}





See the documentation of the wrench::Simulation class for all
details. Specifically regarding host pstates, see the example execution
controller in
examples/workflow_api/basic-examples/cloud-bag-of-tasks-energy/TwoTasksAtATimeCloudWMS.cpp,
which interacts with host pstates (and the
examples/workflow_api/basic-examples/cloud-bag-of-tasks-energy/four_hosts_energy.xml
platform description file which defines pstates).



Logging

It is typically desirable for the execution controller to print log
output to the terminal. This is easily accomplished using the
wrench::WRENCH_INFO(), wrench::WRENCH_DEBUG(), and
wrench::WRENCH_WARN() macros, which are used just like C’s
printf(). Each of these macros corresponds to a different logging
level in SimGrid. See the SimGrid logging
documentation for all
details.

Furthermore, one can change the color of the log messages with the
wrench::TerminalOutput::setThisProcessLoggingColor() member
function, which takes as parameter a color specification:


	wrench::TerminalOutput::COLOR_BLACK


	wrench::TerminalOutput::COLOR_RED


	wrench::TerminalOutput::COLOR_GREEN


	wrench::TerminalOutput::COLOR_YELLOW


	wrench::TerminalOutput::COLOR_BLUE


	wrench::TerminalOutput::COLOR_MAGENTA


	wrench::TerminalOutput::COLOR_CYAN


	wrench::TerminalOutput::COLOR_WHITE




When inspecting the code of the execution controllers in the example
simulators you will find many examples of calls to
wrench::WRENCH_INFO(). The logging is per .cpp file, each of
which corresponds to a declared logging category. For instance, in
examples/workflow_api/basic-examples/batch-bag-of-tasks/TwoTasksAtATimeBatchWMS.cpp,
you will find the typical pattern:

// Define a log category name for this file
WRENCH_LOG_CATEGORY(custom_wms, "Log category for TwoTasksAtATimeBatchWMS");

[...]

int TwoTasksAtATimeBatchWMS::main() {

  // Set the logging color to green
  TerminalOutput::setThisProcessLoggingColor(TerminalOutput::COLOR_GREEN);

  [...]

  // Print an info-level message, using printf-like format
  WRENCH_INFO("Submitting the job, asking for %s %s-core nodes for %s minutes",
              service_specific_arguments["-N"].c_str(),
              service_specific_arguments["-c"].c_str(),
              service_specific_arguments["-t"].c_str());

  [...]

  // Print a last info-level message
  WRENCH_INFO("Workflow execution complete");
  return 0;
}





The name of the logging category, in this case custom_wms, can then
be passed to the --log command-line argument. For instance, invoking
the simulator with additional argument
--log=custom_wms.threshold=info will make it so that only those
WRENCH_INFO statements in TwoTasksAtATimeBatchWMS.cpp will be
printed (in green!).





            

          

      

      

    

  

    
      
          
            
  
WRENCH User API

Runtime System Users use WRENCH to simulate application workload
executions using an already available, in-simulation implementation
of a runtime system that uses Core Services to execution that workload.

Navigate through the sidebar to view the documentation for each class
under the WRENCH User API.







            

          

      

      

    

  

    
      
          
            
  
WRENCH Developer API

Runtime System Developers/Researchers use WRENCH to prototype and
evaluate runtime system designs and/or to investigate and evaluate
novel algorithms to be implemented in a runtime system.

Navigate through the sidebar to view the documentation for each class
under the WRENCH Developer API.







            

          

      

      

    

  

    
      
          
            
  
WRENCH Internal API

Internal Developers contribute to the WRENCH code, typically by
implementing new Core Services.

Navigate through the sidebar to view the documentation for each class
under the WRENCH Internal API.
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Creating a bandwidth-meter service



Overview

A bandwidth-meter service simply measures, at regular intervals, the
bandwidth usage of one or more network links, making measurement traces
available as part of the simulation output. Note that this is something
that’s not easy to do in real-world systems, but yay simulation!



Creating a bandwidth-meter service

In WRENCH, a bandwidth-meter service is defined by the
wrench::BandwidthMeterService class, an instantiation of which
requires the following parameters:


	The name of a host on which to start the service;


	A map of key-value pairs, where the keys are link names and the
values are measurement periods in seconds.




The example below creates an instance that runs on host
MeasurerHost, and measures the available bandwidth on link link1
every second and the available bandwidth on link link2 every 10
seconds:

auto np_service = simulation->add(
          new wrench::BandwidthMeterService("MeasurerHost", {{"link1",1.0},{"link2", 10.0}});





One the simulation is completed, bandwidth usage measurement time stamps
can be accessed as follows:

auto bandwidth_usage = simulation->getOutput().getTrace<wrench::SimulationTimestampLinkUsage>();





See the documentation of wrench::SimulationOutput for more details.




            

          

      

      

    

  

    
      
          
            
  
Creating a bare-metal compute service



Overview

A bare-metal compute service makes it possible to run tasks directly on
hardware resources. Think of it as a set of multi-core hosts on which
multi-threaded processes can be started using something like Ssh. The
service does not perform any space-sharing among the jobs. In other
words, jobs submitted to the service execute concurrently in a
time-shared manner. It is the responsibility of the job submitter to
pick hosts and/or numbers of cores for each task, e.g., to enforce
space-sharing of cores. But by default the compute service operates as a
“jungle” in which tasks share cores at will. The only resource
allocation performed by the service is that it ensures that the RAM
capacity of a hosts are not exceeded. Tasks that have non-zero RAM
requirements are queued in FCFS fashion at each host until there is
enough RAM to execute them (think of this as each host running an OS
that disallows swapping and implements a FCFS access policy for RAM
allocation).



Creating a bare-metal compute service

In WRENCH, a bare-metal service is defined in the
wrench::BareMetalComputeService class. An instantiation of a
bare-metal service requires the following parameters:


	The name of a host on which to start the service;


	A set of compute hosts in a map (std::map), where each key is a
hostname and each value is a tuple (std::tuple) with a number of
cores and a RAM capacity;


	A mount point (corresponding to a disk attached to the host) for the
scratch space, i.e., storage local to the bare-metal service (used to
store workflow files, as needed, during job executions); and


	Maps (std::map) of configurable properties
(wrench::BareMetalComputeServiceProperty) and configurable
message payloads (wrench::BareMetalComputeServiceMessagePayload).




The example below creates an instance of a bare-metal service that runs
on host Gateway, provides access to all cores and 1GiB of RAM on
host Node1 and to 8 cores and all RAM on host Node2, and has a
scratch space on the disk mounted at path /scratch on host
Gateway. Furthermore, the thread startup overhead is configured to
be one hundredth of a second, and the message with which the service
answers resource request description requests is configured to be 1KiB:

auto baremetal_cs = simulation->add(
          new wrench::BareMetalComputeService("Gateway",
                                       {{"Node1", std::make_tuple(wrench::ComputeService::ALL_CORES, pow(2,30))},
                                       {"Node2", std::make_tuple(8, wrench::ComputeService::ALL_RAM}},
                                       "/scratch/",
                                       {{wrench::BareMetalComputeServiceProperty::THREAD_STARTUP_OVERHEAD, "0.01"}},
                                       {{wrench::BareMetalComputeServiceMessagePayload::RESOURCE_DESCRIPTION_ANSWER_MESSAGE_PAYLOAD, 1024});





See the documentation of wrench::BareMetalComputeServiceProperty and
wrench::BareMetalComputeServiceMessagePayload for all possible
configuration options.

Also see the simulators in the examples/workflow_api/basic-examples/bare-metal-*/ and
examples/action_api/bare-metal-*/
directories, which use bare-metal compute services.




            

          

      

      

    

  

    
      
          
            
  
Creating a batch compute service



Overview

A batch service is a service that makes it possible to run jobs on a
homogeneous cluster managed by a batch scheduler. The batch scheduler
receives requests that ask for a number of compute nodes, with a number
of cores per compute node, and a duration. Requests wait in a queue and,
using a range of possible batch scheduling algorithms, are dispatched to
the requested compute resources in a space-sharing manner. Therefore, a
job submitted to the service experiences a “queue waiting time” period
(the length of which depends on the load on the service) followed by an
“execution time” period. In typical batch-scheduler fashion, a running
job is forcefully terminated when it reaches its requested duration
(i.e., the job fails). If, instead, the job completes before the
requested duration, it succeeds. In both cases, the job’s allocated
compute resources are reclaimed by the batch scheduler.

A batch service also supports so-called “pilot jobs”, i.e., jobs that
are submitted to the service, with requested resources and duration, but
without specifying at submission time which workflow tasks/operations
should be performed by the job. Instead, once the job starts it exposes
to its submitter a bare-metal service.
This service is available only for the requested duration, and can be
used in any manner by the submitter. This allows late binding of
workflow tasks to compute resources.



Creating a batch compute service

In WRENCH, a batch service is defined by the
wrench::BatchComputeService class. An instantiation of a batch
service requires the following parameters:


	The name of a host on which to start the service;


	A list (std::vector) of hostnames (all cores and all RAM of each
host is available to the batch service);


	A mount point (corresponding to a disk attached to the host) for the
scratch space, i.e., storage local to the batch service (used to
store workflow files, as needed, during job executions); and


	Maps (std::map) of configurable properties
(wrench::BatchComputeServiceProperty) and configurable message
payloads (wrench::BatchComputeServiceMessagePayload).




The example below creates an instance of a batch service that runs on
host Gateway and provides access to 4 hosts (using all their cores
and RAM), with scratch space on the disk mounted at path /scratch/
at host Gateway. Furthermore, the batch scheduling algorithm is
configured to use the FCFS (First-Come-First-Serve) algorithm, and the
message with which the service answers resource request description
requests is configured to be 1KiB:

auto batch_cs = simulation->add(
          new wrench::BatchComputeService("Gateway",
                                   {"Node1", "Node2", "Node3", "Node4"},
                                   "/scratch/",
                                   {{wrench::BatchComputeServiceProperty::BATCH_SCHEDULING_ALGORITHM, "fcfs"}},
                                   {{wrench::BareMetalComputeServiceMessagePayload::RESOURCE_DESCRIPTION_ANSWER_MESSAGE_PAYLOAD, 1024}});





See the documentation of wrench::BatchComputeServiceProperty and
wrench::BatchComputeServiceMessagePayload for all possible
configuration options.

Also see the simulators in the examples/workflow_api/basic-examples/batch-*/ and
examples/action_api/batch-*/
directories, which use batch compute services.




            

          

      

      

    

  

    
      
          
            
  
Creating a cloud compute service



Overview

A cloud service is an abstraction of a compute service that corresponds
to a cloud platform that provides access to virtualized compute
resources, i.e., virtual machines (VMs). The cloud service provides all
necessary functions to manage VMs (create, suspend/resume, shutdown).
Jobs are never submitted directly to a cloud service. Instead, a VM
instance behaves as a bare-metal
service, to which jobs can be submitted.

The main difference between a cloud service and a virtualized cluster
service is that the latter does
expose the underlying physical infrastructure (e.g., it is possible to
instantiate a VM on a particular physical host, or to migrate a VM
between two particular physical hosts).



Creating a cloud compute service

In WRENCH, a cloud service is defined by the
wrench::CloudComputeService class. An instantiation of a cloud
service requires the following parameters:


	The name of a host on which to start the service;


	A list (std::vector) of hostnames (all cores and all RAM of each
host are available to the cloud service);


	A mount point (corresponding to a disk attached to the host) for the
scratch space, i.e., storage local to the cloud service (used to
store workflow files, as needed, during job executions); and


	Maps (std::map) of configurable properties
(wrench::CloudComputeServiceProperty) and configurable message
payloads (wrench::CloudComputeServiceMessagePayload).




The example below creates an instance of a cloud service that runs on
host cloud_gateway, provides access to 4 execution hosts, and has a
scratch space on the disk mounted at path /scratch at host
cloud_gateway. Furthermore, the VM boot time is configured to be 10
second, and the message with which the service answers resource request
description requests is configured to be 1KiB:

auto cloud_cs = simulation.add(
          new wrench::CloudComputeService("cloud_gateway", {"host1", "host2", "host3", "host4"}, "/scratch/",
                                   {{wrench::CloudServiceProperty::VM_BOOT_OVERHEAD_IN_SECONDS, "10"}},
                                   {{wrench::BareMetalComputeServiceMessagePayload::RESOURCE_DESCRIPTION_ANSWER_MESSAGE_PAYLOAD, 1024}}));





See the documentation of wrench::CloudComputeServiceProperty and
wrench::CloudComputeServiceMessagePayload for all possible
configuration options.

Also see the simulators in the examples/workflow_api/basic-examples/cloud-*/ and
examples/action_api/cloud-*/
directories, which use cloud compute services.




            

          

      

      

    

  

    
      
          
            
  
Creating an energy-meter service



Overview

An energy-meter service simply measures, at regular intervals, the
energy consumed by one or more hosts, making measurement traces
available as part of the simulation output.



Creating an energy-meter service

In WRENCH, an energy-meter service is defined by the
wrench::EnergyMeterService class, an instantiation of which requires
the following parameters:


	The name of a host on which to start the service;


	A map of key-value pairs, where the keys are hostnames and the values
are measurement periods in seconds.




The example below creates an instance that runs on host
MeasurerHost, and measures the energy consumed on host Host1
every second and the energy consumed on host Host2 every 10 seconds:

auto np_service = simulation->add(
          new wrench::EnergyMeterService("MeasurerHost", {{"Host1",1.0},{"Host2", 10.0}});





One the simulation is completed, energy measurement time stamps can be
accessed as follows:

auto energy_consumption_timestamps = simulation->getOutput().getTrace<wrench::SimulationTimestampEnergyConsumption>();





See the documentation of wrench::SimulationOutput for more details.




            

          

      

      

    

  

    
      
          
            
  
Creating a file registry service



Overview

A file registry service is a simple store of key-values pairs where keys
are files (i.e., wrench::DataFile) and values are file locations
(i.e., wrench::FileLocation). It is used to keep track of the
location of file copies. In real-world deployments, this service is
often called a “replica catalog”.



Creating a file registry service

In WRENCH, a file registry service is defined by the
wrench::FileRegistryService class, an instantiation of which
requires the following parameters:


	The name of a host on which to start the service; and


	Maps (std::map) of configurable properties
(wrench::NetworkProximityServiceProperty) and configurable
message payloads (wrench::NetworkProximityServiceMessagePayload).




The example below creates an instance that runs on host
ReplicaCatalog. Furthermore, the service is configured so that
looking up an entry takes 100 flops of computation, and so that the
message sent to the service to lookup an entry is 1KiB:

auto fr_service = simulation->add(
          new wrench::FileRegistryService("ReplicaCatalog",
                                       {{wrench::FileRegistryServiceProperty::LOOKUP_COMPUTE_COST, "0.1"}},
                                       {{wrench::BareMetalComputeServiceMessagePayload::FILE_LOOKUP_REQUEST_MESSAGE_PAYLOAD, 1024}});





See the documentation of wrench::FileRegistryServiceProperty and
wrench::FileRegistryServiceMessagePayload for all possible
configuration options.




            

          

      

      

    

  

    
      
          
            
  
Creating a HTCondor compute service



Overview

HTCondor is a workload management framework
that supervises task executions on various sets of resources. HTCondor
is composed of six main service daemons (startd, starter,
schedd, shadow, negotiator, and collector). In addition,
each host on which one or more of these daemons is spawned must also run
a master daemon, which controls the execution of all other daemons
(including initialization and completion).



Creating an HTCondor Service

HTCondor is composed of a pool of resources in which jobs are submitted
to perform their computation. In WRENCH, an HTCondor service represents
a compute service (wrench::ComputeService), which is defined by the
wrench::HTCondorComputeService class. An instantiation of an
HTCondor service requires the following parameters:


	The name of a host on which to start the service;


	A std::set of ‘child’ wrench::ComputeService instances
available to the HTCondor pool; and


	A std::map of properties
(wrench::HTCondorComputeServiceProperty) and message payloads
(wrench::HTCondorComputeServiceMessagePayload).




The set of compute services may include compute service instances that
are either wrench::BareMetalComputeService or
wrench::BatchComputeService instances. The example below creates an
instance of an HTCondor service with a pool of resources containing a
Bare-metal server:

// Simulation
wrench::Simulation simulation;
simulation.init(&argc, argv);

// Create a bare-metal service

auto baremetal_service = simulation.add(
    new wrench::BareMetalComputeService(
          "execution_hostname",
          {std::make_pair(
                  "execution_hostname",
                  std::make_tuple(wrench::Simulation::getHostNumCores("execution_hostname"),
                                  wrench::Simulation::getHostMemoryCapacity("execution_hostname")))},
          "/scratch/"));

std::set<std::shared_ptr<wrench::ComputeService>> compute_services;
compute_services.insert(baremetal_service);

auto htcondor_compute_service = simulation->add(
          new wrench::HTCondorComputeService(hostname,
                                      std::move(compute_services),
                                      {{wrench::HTCondorComputeServiceProperty::SUPPORTS_PILOT_JOBS, "false"}}
                                      ));





Jobs submitted to the wrench::HTCondorComputeService instance will
be dispatched automatically to one of the ‘child’ compute services
available to that instance (only one in the above example).




            

          

      

      

    

  

    
      
          
            
  
Creating a network proximity service



Overview

A network proximity service answers queries regarding the network
proximity between hosts. The service accomplishes this by periodically
performing round-trip network transfer experiments between hosts,
keeping a record of observed network transfer times, and computing
network distances.



Creating a network proximity service

In WRENCH, a network proximity service is defined by the
wrench::NetworkProximityService class, an instantiation of which
requires the following parameters:


	The name of a host on which to start the service;


	A set of hosts names in a vector (std::vector), which define
which hosts are monitored by the service; and


	Maps (std::map) of configurable properties
(wrench::NetworkProximityServiceProperty) and configurable
message payloads (wrench::NetworkProximityServiceMessagePayload).




The example below creates an instance that runs on host
Networkcentral, and can answer network distance queries about hosts
Host1, Host2, Host3, and Host4. The service’s properties
are customized to specify that the service performs network transfer
experiments on average every 60 seconds, that the Vivaldi algorithm is
used to compute network coordinates, and that the message sent to the
service to lookup an entry is configured to be 1KiB:

auto np_service = simulation->add(
          new wrench::NetworkProximityService("Networkcentral",
                                       {"Host1", "Host2", "Host3", "Host4"},
                                       {{wrench::NetworkProximityServiceProperty::NETWORK_PROXIMITY_MEASUREMENT_PERIOD, "60"},
                                        {wrench::NetworkProximityServiceProperty::NETWORK_PROXIMITY_SERVICE_TYPE, "VIVALDI"}},
                                       {{wrench::NetworkProximityServiceMessagePayload::NETWORK_DB_LOOKUP_REQUEST_MESSAGE_PAYLOAD, "1024"}});





See the documentation of wrench::NetworkProximityServiceProperty and
wrench::NetworkProximityServiceMessagePayload for all possible
configuration options.




            

          

      

      

    

  

    
      
          
            
  
Creating a simple storage service



Overview

A Simple storage service is the simplest possible abstraction for a
service that can store and provide access to workflow files. It has a
certain storage capacity, and provides write, read, and delete
operations on files. In addition, higher-level semantics such as copying
a file directly from a storage service to another are provided.



Creating a Simple storage service

In WRENCH, a Simple storage service represents a storage service
(wrench::StorageService), which is defined by the
wrench::SimpleStorageService class. An instantiation of a Simple storage
service requires the following parameters:


	The name of a host on which to start the service;


	A list of mount points (corresponding to disks attached to the host);
and


	Maps (std::map) of configurable properties
(wrench::SimpleStorageServiceProperty) and configurable message
payloads (wrench::SimpleStorageServiceMessagePayload).




The example below creates an instance of a Simple storage service that
runs on host BigDisk, has access to the disks mounted at paths
/data/ and /home/ at host BigDisk. Furthermore, the number
of maximum concurrent data connections supported by the service is
configured to be 8, and the message sent to the service to find out its
free space is configured to be 1KiB:

auto storage_service = simulation->add(
          new wrench::SimpleStorageService("BigDisk",
                                  {"/data/", "/home/"},
                                       {{wrench::SimpleStorageProperty::MAX_NUM_CONCURRENT_DATA_CONNECTIONS, "8"}},
                                       {{wrench::SimpleStorageServiceMessagePayload::FREE_SPACE_REQUEST_MESSAGE_PAYLOAD, "1024"}
                                      );





See the documentation of wrench::SimpleStorageServiceProperty and
wrench::SimpleStorageServiceMessagePayload for all possible
configuration options.

Also see the simulators in the examples/workflow_api/basic-examples/* and
examples/action_api/*
directories, which all use simple storage services.




            

          

      

      

    

  

    
      
          
            
  
Creating a virtualized cluster compute service



Overview

A virtualized cluster service is an abstraction of a compute service
that corresponds to a platform of physical resources on which Virtual
Machine (VM) instances can be created. A virtualized cluster service is
very similar to a a cloud service, the only
difference being that the former exposes the underlying physical
resources, while the latter does not. More specifically, it is possible
to instantiate a VM on a particular physical host, and to migrate a VM
between two physical hosts.



Creating a virtualized cluster compute service

In WRENCH, a virtualized cluster service is defined by the
wrench::VirtualizedClusterComputeService class. An instantiation of a
virtualized cluster service requires the following parameters:


	The name of a host on which to start the service;


	A list (std::vector) of hostnames (all cores and all RAM of each
host is available to the virtualized cluster service);


	A mount point (corresponding to a disk attached to the host) for the
scratch space, i.e., storage local to the virtualized cluster service
(used to store workflow files, as needed, during job executions); and


	Maps (std::map) of configurable properties
(wrench::VirtualizedClusterComputeServiceProperty) and
configurable message payloads
(wrench::VirtualizedClusterComputeServiceMessagePayload).




The example below creates an instance of a virtualized cluster service
that runs on host vc_gateway, provides access to 4 execution hosts,
and has a scratch space on the disk mounted at path /scratch at host
vc_gateway. Furthermore, the VM boot time is configured to be 10
second, and the message with which the service answers resource
description requests is configured to be 1KiB:

auto virtualized_cluster_cs = simulation.add(
          new wrench::VirtualizedClusterComputeService(
                                                "vc_gateway",
                                                {"host1", "host2", "host3", "host4"},
                                                "/scratch/",
                                                {{wrench::VirtualClusterComputeServiceProperty::VM_BOOT_OVERHEAD_IN_SECONDS, "10"}},
                                                {{wrench::VirtualClusterComputeServiceMessagePayload::RESOURCE_DESCRIPTION_ANSWER_MESSAGE_PAYLOAD,
                                                1024}}));





See the documentation of
wrench::VirtualizedClusterComputeServiceProperty and
wrench::VirtualizedClusterComputeServiceMessagePayload for all
possible configuration options.

Also see the simulators in the
examples/workflow_api/basic-examples/virtualized-cluster-*/ directories, which
use virtualized cluster services.




            

          

      

      

    

  

    
      
          
            
  
Creating an XRootD storage service



Overview

An XRootD storage service is a distributed file system that is
composed of individual storage services arranged in a tree of arity at most 64. There are two kinds of
nodes, storage nodes and supervisor nodes.
A storage node internally uses a Simple Storage Service
and supports all the Simple Storage Service operations. A supervisor node is always the root of a
sub-tree and can perform file searches in that sub-tree, all the while maintaining a cache
of recent file search results (with a time-to-live for remembering these results).



Creating an XRootD storage service

An XRootD storage service is described by specifying the deployment of the nodes in the XRootD tree
on hardware resources (i.e., hosts where individual nodes in the


tree will execute and access disks available at these hosts). To this end,




a wrench::XRootD::Deployment object must be created first, before the
simulation is launched. An instance of an Deployment is constructed based on:


	A wrench::Simulation object;


	Optional Maps (std::map) of configurable default properties
(wrench::XRootD::Property) and configurable default message
payloads (wrench::XRootD::MessagePayload).




Once the deployment object is created, it can be used to add nodes to the tree, i.e., instances
of the wrench::XRootD::Node class.  First a root node must be instantiated by calling the
wrench::XRootD::Deployment::createRootSupervisor() method.

Once the root node has been instantiated, it can be used to build the rest of XRootD tree. Some nodes
in the trees are supervisors, i.e., they know about all other nodes in the subtree of which they are the root and can direct
searches for files down this subtree. Creating a new supervisor node in the tree is simply done
by calling the wrench::XRootD::Node::addChildSupervisor() method on the
node that will be the new node’s parent.

The other kind of node is a storage node, which can store files.
A storage node has an underlying ref:Simple Storage Service <guide-101-simplestorage>
that stores the files.
Creating a storage node is done by calling the wrench::XRootD::Node::addChildStorageServer() on the
node that will be the new node’s parent.

The example below creates a small XRootD deployment of 3 nodes, a root on host Root, a supervisor node
on host Super, and a Storage node on Storage. The nodes are arranged in a tree of arity 1 as follows Root->Super->Storage.
The XRootD deployment is configured to simulate all underlying communications involved during a search
(the REDUCED_SIMULATION property). The cache lifetime is at most to 1 hour (the CACHE_MAX_LIFETIME property), but
the supervisor running on Super has only a 30-minute cache lifetime. The cache is where a supervisor keeps
the locations of files that it has previous found via searches. The storage node running on
Storage is created with parameters similar to that used to create a SimpleStorageService instance. In
this example, it has mountpoint /, can support up to 8 concurrent data connections, and the size of the
control message that is sent to it to request a file read is 2KiB.  Finally, in this example, a copy of file
someFile is created ab initio on the storage node.

wrench::XRootD::XRootDDeploment xrootd_deployment(simulation,
                           {{wrench::XRootD::Property::CACHE_MAX_LIFETIME, "3600"},
                           {wrench::XRootD::Property::REDUCED_SIMULATION, "false"}},
                           {});
auto root = xrootd_deployment.createRootSupervisor("Root");
auto super = root->addChildSupervisor("Super", {wrench::XRootD::Property::CACHE_MAX_LIFETIME, "1800"});
auto storage = super->addChildStorageServer(
    "Storage", "/",
    {},
    {},
    {{wrench::SimpleStorageProperty::MAX_NUM_CONCURRENT_DATA_CONNECTIONS, "8"}},
    {{wrench::SimpleStorageServiceMessagePayload::FILE_READ_REQUEST_MESSAGE_PAYLOAD, "2048"});

storage->createFile(someFile);





See the documentation of wrench::XRootD::Property and
wrench::XRootD::MessagePayload for all possible
configuration options.

See the example simulator in the examples/action_api/XRootD directory for a more complex XRootD
deployment.




            

          

      

      

    

  

    
      
          
            
  
Interacting with a bare-metal compute service

A wrench::StandardJob can be submitted to a bare-metal compute
service via a job manager. For instance:

std::shared_ptr<wrench::BareMetalComputeService> some_bare_metal_service;

// Create a job manager
auto job_manager = this->createJobManager();

// Create a standard job with 4 workflow tasks
auto job = job_manager->createStandardJob(
                 {this->getWorklow()->getTaskByID("task"),
                  this->getWorklow()->getTaskByID("task2"),
                  this->getWorklow()->getTaskByID("task3"),
                  this->getWorklow()->getTaskByID("task4")});

// Submit the job to the bare-metal service
job_manager->submitJob(job, some_bare_metal_service);

//  Wait for and process the next event (should be a standard job completion or failure)
this->waitForAndProcessNextEvent();





In the above, the bare-metal service will make all decisions for
deciding how to allocate compute resources (i.e., cores) to tasks. In
fact, several properties (see class
wrench::BareMetalComputeServiceProperty) can be set to change the
algorithms used by the service to determine resource allocations.

In some cases, the execution controller may want to influence or enforce
resource allocations for the tasks in the jobs. For this purpose, the
wrench::JobManager::submitJob() method takes an optional
service-specific argument. This argument is a
std::map<std::string, std::string> of key-value pairs. The key is a
task ID, and the value is the service-specific argument for that task.

For each task, an optional argument can be provided as a string
formatted as “hostname:num_cores”, “hostname”, or “num_cores”, where
“hostname” is the name of one of the service’s compute hosts and
“num_cores” is an integer (e.g., “host1:10”, “host1”, “10”):


	If no value is provided for a task, or if the value is the empty
string, then the bare-metal service will choose the host on which the
task should be executed (typically the host with the lowest current
load), and will execute the task with as many cores as possible on
that host.


	If a “hostname” value is provided for a task, then the bare-metal
service will execute the task on that host, and will execute the task
with as many cores as possible on that host.


	If a “num_cores” value is provided for a task, then the bare-metal
service will choose the host on which the task should be executed
(typically the host with the lowest current load), and will execute
the task with the specified number of cores.


	If a “hostname:num_cores” value is provided for a task, then the
bare-metal service will execute the task on that host with the
specified number of cores.




In the above example, for instance, the job submission could be done as:

// Create a service-specific argument std::map<std::string, std::string>
service_specific_args;

// task will run on host Node1 with as many cores as possible
service_specific_args["task"] = "Node1";

// task2 will run on host Node2 with 16 cores
service_specific_args["task2"] = "Node2:16";

// task3 will run on any host with as many cores as possible
service_specific_args["task3"] = ""; // could be omitted altogether

// task4 will run on some host with 4 cores
service_specific_args["task4"] = "4";

// Submit the job job_manager->submitJob(job, some_bare_metal_service,
service_specific_args);





If the service-specific arguments are invalid (e.g., invalid hostname,
unknown task, number of cores too large), the
wrench::JobManager::submitJob() method throws a
wrench::ExecutionException.

See the execution controller implementation in
examples/workflow_api/basic-examples/bare-metal-bag-of-tasks/TwoTasksAtATimeWMS.cpp
for a more complete example.




            

          

      

      

    

  

    
      
          
            
  
Interacting with a batch compute service

A job, either wrench::StandardJob or wrench::PilotJob, can be
submitted to a wrench::BatchComputeService by a call to the
wrench::JobManager::submitJob() method. However, it is required
to pass to it a service-specific argument. This argument is a
std::map<std::string, std::string> of key-value pairs, and must have
the following three elements:


	key: -t; value: a requested runtime in minutes that, if exceeded,
causes forceful job termination (e.g., “60”);


	key: -N; value: a requested number of compute nodes (e.g., “2”);
and


	key: -c; value: a requested number of cores per compute nodes
(e.g., “4”).




You may note that the above corresponds to the arguments that must be
provided to the Slurm batch scheduler.

Here is an example job submission to the batch service:

std::shared_ptr<wrench::BatchComputeService> some_batch_service;

// Create a job manager
auto job_manager = this->createJobManager();

// Create a job
auto job = job_manager->createStandardJob(tasks);

// Create service-specific arguments
std::map<std::string, std::string> service_specific_args;

//   The job will run no longer than 1 hour
service_specific_args["-t"] = "60";

//   The job will run on 2 compute nodes
service_specific_args["-N"] = "2";

//   The job will use 4 cores on each compute nodes
service_specific_args["-c"] = "4";

// Submit the job
job_manager->submitJob(job, some_batch_service, service_specific_args);

//  Wait for and process the next event
this->waitForAndProcessNextEvent();





If the service-specific arguments are invalid (e.g., number of nodes too
large), wrench::JobManager::submitJob() method throws a
wrench::ExecutionException.

See the execution controller implementation in
examples/workflow_api/basic-examples/batch-bag-of-tasks/TwoTasksAtATimeBatchWMS.cpp
for a more complete example.

A batch compute service also supports pilot jobs. Once started, a pilot
job exposes a temporary (only running until its containing pilot job
expires) bare-metal compute service. Here is a simple code excerpt:

// create a pilot job
auto pilot_job = job_manager->createPilotJob();

// submit it to the batch compute service, asking for 2 10-core nodes for 20 minutes
std::map<std::string, std::string> service_specific_arguments =
            {{"-N","2"},{"-c","10"},{"-t","20"}};
job_manager->submitJob(pilot_job, some_batch_service, service_specific_arguments);

// Waiting for the next event (which will be a pilot job start event)
this->waitForAndProcessNextEvent();

// Get a reference to the bare-metal compute service running on the pilot job
auto cs = pilot_job->getComputeService();

// Start using the bare-metal compute service
[...]





While the pilot job is running, standard jobs can be submitted to its
bare-metal service.

See the execution controller implementation in
examples/workflow_api/basic-examples/batch-pilot-job/PilotJobWMS.cpp
for a more complete example.




            

          

      

      

    

  

    
      
          
            
  
Interacting with a cloud compute service

A cloud service provides mechanisms to manage the set of VMs
instantiated on hardware resources. Each VM instance, while it’s
running, exposes its own bare-metal compute service to which standard
jobs can be submitted. As a result, one
never submits a job directly to a cloud service.

It is possible to create, shutdown, start, suspend, and resume VMs (see
a complete list of functions available in the
wrench::CloudComputeService API documentation). The figure below
shows the state transition diagram of a VM instance:


[image: ../_images/wrench-guide-cloud-state-diagram.png]

Here is an example interaction with a wrench::CloudComputeService:

std:shared_ptr<wrench::CloudComputeService> some_cloud_cs;

// Create a VM with 2 cores and 1 GiB of RAM
auto vm1 = some_cloud_cs->createVM(2, pow(2,30));

// Create a VM with 4 cores and 2 GiB of RAM
auto vm2 = some_cloud_cs->createVM(4, pow(2,31));

// Start both VMs and keep track of their associated bare-metal compute services
vm1_cs = some_cloud_cs->startVM(vm1);
vm2_cs = some_cloud_cs->startVM(vm2);

// Create a job manager
auto job_manager = this->createJobManager();

// Create a job
auto job = job_manager->createStandardJob({... some tasks ...});

// Submit the job to the 1st VM (i.e., to its bare-metal compute service)
job_manager->submitJob(job, vm1_cs);

// Sleep for 10 seconds
Simulation::sleep(10);

// Suspend the 1st VM
some_cloud_cs->suspend(vm1);

// Sleep for 10 seconds
Simulation::sleep(10);

// Resume the 1st VM
some_cloud_cs->suspend(vm1);

// Wait for and process the next event (should be a standard job completion or failure)
this->waitForAndProcessNextEvent();

// Shutdown both VMs
some_cloud_cs->shutdown(vm1);
some_cloud_cs->shutdown(vm2);





Note that the cloud service will decide on which physical resources VM
instances should be started. The underlying physical resources are
completely hidden by the cloud service abstraction. If you want more
control over how the physical resources are used you likely need a
virtualized cluster services.

See the execution controller implementation in
examples/workflow_api/basic-examples/cloud-bag-of-tasks/TwoTasksAtATimeCloudWMS.cpp
for a more complete example.




            

          

      

      

    

  

    
      
          
            
  
Interacting with a HTCondor compute service

A wrench::HTCondorComputeService instance is essentially a front-end
to several “child” compute services. As such, one can submit jobs to it,
just like one would do to any compute service, but it then “decides” to
which service these jobs will be delegated. In fact, an execution
controller can even add new child compute services to be used by
HTCondor dynamically. Which child service is used is dictated/influenced
by service-specific arguments passed or not passed to the
wrench::JobManager::submitJob() method.

The examples code fragments below showcase the creation of a
wrench::HTCondorComputeService instance and its use by an execution
controller. Let’s start with the creation (in main). Note that arguments
to service constructors are omitted for brevity (see the execution
controller implementation in
examples/workflow_api/condor-grid-example/CondorWMS.cp for a complete and working
example).

// One BareMetalComputeService instance
std::shared_ptr<wrench::BareMetalComputeService> some_baremetal_cs;

// Two BatchComputeService instances
std::shared_ptr<wrench::BatchComputeService> some_batch1_cs;
std::shared_ptr<wrench::BatchComputeService> some_batch2_cs;

// Create a HTCondorComputeService instance with the above
// three services as "child" services
auto htcondor_cs = simulation->add(
     new wrench::HTCondorComputeService("some_host",
                                        {some_baremetal_cs, some_batch1_cs, some_batch2_cs},
                                        "/scratch");

// One CloudComputeService instance
std::shared_ptr<wrench::CloudComputeService> somecloud_cs;





Let’s now say that an execution controller was created that has access
to all 5 above services, but will choose to submit all jobs via
HTCondor. The first thing to do, so as to make the use of the cloud
service possible, is to create a few VM instances and add them as child
services to the HTCondor service:

// Create and start to VMs on the cloud service
auto vm1 = some_cloud_cs->createVM(...);
auto vm2 = some_cloud_cs->createVM(...);
auto vm1_cs = some_cloud_cs->startVM(vm1);
auto vm2_cs = some_cloud_cs->startVM(vm2);

// Add the two VM's bare-metal compute services to HTCondor
htcondor_cs->addComputeService(vm1_cs);
htcondor_cs->addComputeService(vm2_cs);





So, at this point, HTCondor has access to 3 bare-metal compute services
(2 of which are running inside VMs), and 2 batch compute services.

Let’s consider an execution controller that will submit
wrench::StandardJob instances to HTCondor. These jobs can be of two
kinds or, in HTCondor parlance, belong to one of two universes: grid
jobs and non-grid jobs. By default a job is considered to be in the
non-grid universe. But if the service-specific arguments passed to
wrench::JobManager::submitJob() include a “universe”:“grid”
key:value pair, then the submitted job is in the grid universe. HTCondor
handles both kinds of jobs differently:


	Non-grid universe jobs are queued and dispatched by HTCondor whenever
possible to idle resources managed by one of the child bare-metal
services. HTCondor chooses the service to use based on availability
of resources.


	Grid universe jobs are dispatched by HTCondor immediately to a
specific child batch compute service. As a result, these jobs must be
submitted with service-specific arguments that provide values for
“-N”, “-c”, and “-t” keys (like for any job submitted to a batch
compute service), as well as a “-service” key that specifies the name
of the batch service that should run the job (this argument is
optional if there is a single child batch compute service).




In the example below, we show both kinds of job submissions:

// Create a standard job and submit it to HTCondor as a non-grid job,
// which will thus run it on one of its 3 child bare-metal compute services
auto ng_job = job_manager->createStandardJob(...);
job_manager->submitJob(ng_job, htcondor_cs, {}); // no service-specific arguments

// Create a standard job and submit it to HTCondor as a grid job,
// which will run it on the specified child batch compute service.
auto g_job = job_manager->createStandardJob(...);

std::map<std::string, std::string> service_specific_args;
service_specific_args["-N"] = "2"; // 2 compute nodes
service_specific_args["-c"] = "4"; // 4 cores per compute nodes
service_specific_args["-t"] = "60"; // runs for one hour
service_specific_args["universe"] = "grid"; // Grid universe
// Set it to run on the first batch compute service
service_specific_args["-service"] = batch1_cs->getName();

job_manager->submitJob(g_job, htcondor_cs, service_specific_args);





The above covers the essentials. See the API documnetation for more
options, and the code in the examples/workflow_api/condor-grid-example/ directory
for working/usable code.



Anatomy of the HTCondor Service

The in-simulation implementation of HTCondor in WRENCH is simplified in
terms of its functionality and design when compared to the actual
implementation of HTCondor. The wrench::HTCondorComputeService
spawns two additional services during execution,
wrench::HTCondorCentralManagerService and
wrench::HTCondorNegotiatorService, both of which loosely correspond
to actual HTCondor daemons (collector, negotiator, schedd).
Their use is fully automated and transparent to the WRENCH developer.




            

          

      

      

    

  

    
      
          
            
  
Interacting with a simple storage service

The following operations are supported by an instance of
wrench::SimpleStorageService:


	Synchronously check that a file exists


	Synchronously read a file (rarely used by an execution controller but
included for completeness)


	Synchronously write a file (rarely used by an execution controller
but included for completeness)


	Synchronously delete a file


	Synchronously copy a file from one storage service to another


	Asynchronously copy a file from one storage service to another




The first 4 interactions above are done by calling member functions of
the wrench::StorageService class. The last two are done via a Data
Movement Manager, i.e., by calling member functions of the
wrench::DataMovementManager class. Some of these member functions
take an optional wrench::FileRegistryService argument, in which case
they will also update entries in a file registry service (e.g., removing
an entry when a file is deleted).

Several interactions with a simple storage service are done simple by calling
static methods of the wrench::StorageService class. These make
it possible to lookup, delete, read, and write files. For instance:

std::shared_ptr<wrench::SimpleStorageService> storage_service;
// Get the file registry service
std::shared_ptr<wrench::FileRegistryService> file_registry;

std::shared_ptr<wrench::DataFile> some_file;

[...]

// Check whether the storage service holds the file at path /data/ and delete it if so
auto file_location = wrench::FileLocation::LOCATION(storage_service, "/data/");
if (wrench::StorageService::lookupFile(some_file, file_location) {
  std::cerr << "File found!" << std::endl;
  wrench::StorageService::deleteFile(some_file, file_location, file_registry);
}





Note that the file registry service is passed to the
wrench::StorageService::deleteFile() method since the file deletion
should cause the file registry to remove one of its entries.

Reading and writing files is something an execution controller typically
does not do directly (instead, jobs created by the controller contain
actions/tasks  that read and write files as
they execute). But, if for some reason an execution controller needs to
spend time doing file I/O, it is easily done:

// Read some file from the "/" path at some storage service.
// This does not change the simulation state besides simulating a time overhead during which the execution controller is busy
wrench::StorageService::readFile(some_file, wrench::FileLocation::LOCATION(storage_service, "/");

// Write some file to the "/stuff/" path at some storage service.
// This simulates a time overhead after which the storage service will host the file. It
// is a good idea to then add an entry to the file registry service
wrench::StorageService::writeFile(some_file, wrench::FileLocation::LOCATION(storage_service, "/stuff/");





An operation commonly performed by an execution controller is copying
files between storage services (e.g., to enforce some data locality).
This is typically done by specifying file copy operations as part of
standard jobs.
But it can also be done manually by the execution controller via the
data movement manager’s methods
wrench::DataMovementManager::doSynchronousFileCopy() and
wrench::DataMovementManager::initiateAsynchronousFileCopy(). Here is
an example in which a file is copied between storage services:

// Create a data movement manager
auto data_movement_manager = this->createDataMovementManager();

// Synchronously copy some_file from storage_service1 to storage_service2
// While this is taking place, the execution controller is busy
data_movement_manager->doSynchronousFileCopy(some_file, wrench::FileLocation::LOCATION(storage_service1), wrench::FileLocation::LOCATION(storage_service2));

// Asynchronously copy some_file from storage_service2 to storage_service3
data_movement_manager->initiateAsynchronousFileCopy(some_file, wrench::FileLocation::LOCATION(storage_service2), wrench::FileLocation::LOCATION(storage_service3));

[...]

// Wait for and process the next event (may be a file copy completion or failure)
this->waitForAndProcessNextEvent();





See the execution controller implementation in
examples/workflow_api/basic-examples/bare-metal-data-movement/DataMovementWMS.cpp
for a more complete example.




            

          

      

      

    

  

    
      
          
            
  
Interacting with a virtualized cluster service

The wrench::VirtualizedClusterComputeService derives the
wrench::CloudComputeService class. One interacts with it in almost
the same way as one interacts with a cloud
servicde. The one difference between a
virtualized cluster service and a cloud service is that the former
exposes underlying physical resources, while the latter does not. More
simply put, with a virtualized cluster service one can create VM
instances on specific hosts, and migrate VM instances between hosts.

Here is an example interaction with a virtualized cluster service, in
which VM instances are created and (live) migrated:

std::shared_ptr<wrench::VirtualizedClusterComputeService> virtualized_cluster_cs;


// Create a VM with 2 cores and 1 GiB of RAM
auto vm1 = virtualized_cluster_cs->createVM(2, pow(2,30));

// Create a VM with 4 cores and 2 GiB of RAM
auto vm2 = virtualized_cluster_cs->createVM(4, pow(2,31));

[...]

// Start the first VM on Host1
virtualized_cluster_cs->startVM(vm1, "Host1");

// Start the second VM on Host2
virtualized_cluster_cs->startVM(vm1, "Host2");

[...]

// Live migrate vm1 to host3
virtualized_cluster_cs->migrateVM(vm1, "host3");

// Live migrate vm2 to host4
virtualized_cluster_cs->migrateVM(vm2, "host4");

[...]

// Shutdown the VMs
virtualized_cluster_cs->shutdownVM(vm1);
virtualized_cluster_cs->shutdownVM(vm2);





In the code above the VM instances are not used for anything. See the
interacting with a cloud service page for
an example in which jobs are submitted to the VM instances.

See the execution controller implementation in
examples/workflow_api/basic-examples/virtualized-cluster-bag-of-tasks/TwoTasksAtATimeVirtualizedClusterWMS.cpp
for a more complete example.




            

          

      

      

    

  

    
      
          
            
  
Interacting with an XRootD deployment

Recall that an XRootD deployment consists of a tree of instances
of wrench::xrootd::Node, with some of these nodes
being supervisors nodes and others being storage nodes.
The following operations are supported by a supervisor node
(and are accomplished by the supervisor
interacting with the nodes that are in the subtree of which it is the root):



	Synchronously reading a file (rarely used by an execution controller but
included for completeness); and


	Semi-Synchronously deleting a file (execution waits for supervisor to acknowledge delete request,




but does not wait for the full XRootD subtree to be purged)




In addition, all storage nodes in an XRootD tree support all operations that an instance of Simple Storage Service does (which must be invoked directory on that node).

All interactions above are done by calling member functions of
the wrench::StorageService class. Some of these member functions
take an optional wrench::FileRegistryService argument, in which case
they will also update entries in a file registry service (e.g., removing
an entry when a file is deleted).

The following operations:



	Writing to a file; and


	Creating a file







are intentionally only implemented for storage nodes and not supervisor
nodes (i.e., subtrees), due to the ambiguity of which storage node in the
subtree rooted at the supervisor should storage the newly created data.

Several interactions with an XRootD Deployment are done simply by calling virtual methods of the wrench::StorageService class, but it is also
possible to call directly methods of these Simple Storage Service class for XRootD storage nodes. This is because, in the XRootD distributed
file systems, so notions (such as the location of a file) are different than in a non-distributed file system. For instance:

std::shared_ptr<wrench::xrootd::Deployment> deployment;
std::shared_ptr<wrench::DataFile> some_file;

[...]

// Read a file from one specific storage node
deployment->getRootSupervisor()->getChild(0)->readFile(some_file);

// Delete a file from the whole subtree, which may
// delete the file at multiple storage nodes
deployment->getRootSupervisor()->deleteFile(some_file);





Note that file deletion from an XRootD (sub)tree  will not return an error
even if the file does not exist. This is because the delete operation is
only semi-synchronous and XRootD does not
propagate “file not found” errors up the tree.  Similarly, the only indication that
a file read operation has failed is a network timeout while searching.

Note that reading and writing files is something an execution controller typically
does not do directly. Instead, jobs created by the execution controller contain
actions/tasks that read and write files as
they execute.  A XRootD supervisor node can then be passed to these tasks/actions
exactly as one would pass a Simple Storage Service instance. For instance:

// Create a job
auto job = job_manager->createCompoundJob("some_job");
// Add a file read action that will read from an XRootD supervisor node
auto action = job->addFileReadAction("file_read", some_file, deployment->getRootSupervisor());





See the execution controller implementation in
examples/action-api/XRootD/Controller.cpp
for a more complete example.
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